Cascade Vinylation/8π-Electrocyclization and Cu(II)-Catalyzed Dehydrogenation toward Highly Stable Formally Antiaromatic Cycloheptatrienyl Anions

J Org Chem. 2023 May 5;88(9):5661-5670. doi: 10.1021/acs.joc.3c00142. Epub 2023 Apr 7.

Abstract

An approach to the synthesis of seven-membered systems via the chain elongation of nucleophilic propenes and subsequent 8π-electrocyclization is proposed. The cascade reaction yields either cycloheptadienes or bicycloheptenes, and the latter are formed via a 6π-electrocyclization of intermediate cycloheptadienyl anion which was proved to be reversible in a basic medium. The electrocyclic nature of the ring-closing reactions was supported by density functional theory and DLPNO/CCSD(T) calculations. Highly electron-deficient cycloheptatrienes can be obtained from cycloheptadienes or bicycloheptenes via oxidation either introduced into the cascade reaction or performed as a separate reaction, with the overall yield of up to 81%. The oxidation step was performed by means of a rarely encountered Cu(II)-catalyzed dehydrogenation of cycloheptadienes or bicycloheptenes, and so the reaction mechanism was proposed. Stable formally 8π-antiaromatic cycloheptatrienyl-anion containing compounds were obtained, and some correlations between their UV-vis spectra and the structure of the distorted cycloheptatrienyl-anion moiety were clarified. Additionally, a base-induced retro-[2 + 2]-cycloaddition in a bicycloheptene derivative gave cyanotetra(methoxycarbonyl)cyclopentadienyl cesium.