Representation Learning and Reinforcement Learning for Dynamic Complex Motion Planning System

IEEE Trans Neural Netw Learn Syst. 2023 Mar 2:PP. doi: 10.1109/TNNLS.2023.3247160. Online ahead of print.

Abstract

Indoor motion planning challenges researchers because of the high density and unpredictability of moving obstacles. Classical algorithms work well in the case of static obstacles but suffer from collisions in the case of dense and dynamic obstacles. Recent reinforcement learning (RL) algorithms provide safe solutions for multiagent robotic motion planning systems. However, these algorithms face challenges in convergence: slow convergence speed and suboptimal converged result. Inspired by RL and representation learning, we introduced the ALN-DSAC: a hybrid motion planning algorithm where attention-based long short-term memory (LSTM) and novel data replay combine with discrete soft actor-critic (SAC). First, we implemented a discrete SAC algorithm, which is the SAC in the setting of discrete action space. Second, we optimized existing distance-based LSTM encoding by attention-based encoding to improve the data quality. Third, we introduced a novel data replay method by combining the online learning and offline learning to improve the efficacy of data replay. The convergence of our ALN-DSAC outperforms that of the trainable state of the arts. Evaluations demonstrate that our algorithm achieves nearly 100% success with less time to reach the goal in motion planning tasks when compared to the state of the arts. The test code is available at https://github.com/CHUENGMINCHOU/ALN-DSAC.