Intramuscular IL-10 Administration Enhances the Activity of Myogenic Precursor Cells and Improves Motor Function in ALS Mouse Model

Cells. 2023 Mar 26;12(7):1016. doi: 10.3390/cells12071016.

Abstract

Amyotrophic Lateral Sclerosis (ALS) is the most common adult motor neuron disease, with a poor prognosis, a highly unmet therapeutic need, and a burden on health care costs. Hitherto, strategies aimed at protecting motor neurons have missed or modestly delayed ALS due to a failure in countering the irreversible muscular atrophy. We recently provided direct evidence underlying the pivotal role of macrophages in preserving skeletal muscle mass. Based on these results, we explored whether the modulation of macrophage muscle response and the enhancement of satellite cell differentiation could effectively promote the generation of new myofibers and counteract muscle dysfunction in ALS mice. For this purpose, disease progression and the survival of SOD1G93A mice were evaluated following IL-10 injections in the hindlimb skeletal muscles. Thereafter, we used ex vivo methodologies and in vitro approaches on primary cells to assess the effect of the treatment on the main pathological signatures. We found that IL-10 improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of macrophages. This resulted in delayed muscle atrophy and motor neuron loss. Our findings provide the basis for a suitable adjunct multisystem therapeutic approach that pinpoints a primary role of muscle pathology in ALS.

Keywords: Amyotrophic Lateral Sclerosis; macrophages; mouse models; myogenic precursor cells; skeletal muscle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis* / pathology
  • Animals
  • Disease Models, Animal
  • Interleukin-10
  • Mice
  • Motor Neurons / pathology
  • Muscular Atrophy / drug therapy
  • Muscular Atrophy / pathology
  • Superoxide Dismutase

Substances

  • Interleukin-10
  • Superoxide Dismutase

Grants and funding

This work was mainly supported by the Fondazione Italiana di Ricerca per la Sclerosi Laterale Amiotrofica (AriSLA Grant “MACROPHALS”) to G.N. and the Starting Grant of the Italian Ministry of Health (SG-2018-12366226) to P.F.