Hydraulic Characterization of Ceramic Foam Filters Used in Aluminum Filtration

Materials (Basel). 2023 Mar 31;16(7):2805. doi: 10.3390/ma16072805.


Ceramic Foam Filters (CFF) are frequently used during the filtration of aluminum (Al) melts to produce high-quality products. In the present study, the physical and hydraulic characteristics of alumina (Al2O3)-based CFF from three different suppliers (A, B and C) have been thoroughly investigated. The filters' porosity and pore diameter, i.e., Window and Cell Feret diameters, were measured and the permeability of the different filters calculated based on pressure drop experiments. The comparison of the classification systems of CFF, i.e., Grade and PPI (Pore Per Inch) numbers, using statistical analysis of permeability and Window Feret diameter showed significant variations between the morphological and hydraulic properties of some CFFs of identical Grade and PPI numbers. Moreover, the Fanning friction factor was plotted as a function of interstitial Reynolds numbers (Rei), and laminar, transient, and turbulent flow regimes were identified. The relationship between the Fanning friction factor and the interstitial Reynolds numbers of all the filter samples investigated was processed using regression analysis, and a model equation developed to calculate the pressure drop over the CFF using the Window Feret diameter. The correlation between the experimental pressure drop values and the derived model equation indicates that empirical expressions for calculating the pressure drop over CFFs should be derived based on experimental measurements carried out at the velocity range of the application of the CFF, which is about 10 mm·s-1 for aluminum filtration.

Keywords: CFF; Darcy law; aluminum recycling; aluminum refining; permeability; pressure drop.

Grants and funding

This research was funded by the SFI Metal Production (Center for Research-based Innovation) grant number 237738.