Tolerance of high temperature and associated effects on reproduction in euedaphic Collembola

J Therm Biol. 2023 Apr:113:103439. doi: 10.1016/j.jtherbio.2022.103439. Epub 2022 Dec 23.

Abstract

Studies show that tropical and mid-latitude terrestrial ectotherms are more vulnerable to global warming than species from high latitudes. However, thermal tolerance studies from these regions still lack soil invertebrates. In the present study, we investigated six euedaphic species of Collembola (of the genera Onychiurus and Protaphorura) sampled across latitudes ranging from 31° N to 64° N and determined their upper thermal limit (UTL) by static assays. In another experiment, we submitted springtails to high temperatures for exposure times, causing 5% to 30% mortality within each species. Survivors from this series of increasing heat injuries were used to determine the time-to-first-oviposition and the number of eggs produced following heat exposure. Two hypotheses are tested in this study: 1) heat tolerance of species correlates positively with the environmental temperature of their habitat; 2) the most heat-tolerant species require less time to regain reproduction and produce more eggs than the least heat-tolerant species. Results showed that the UTL positively correlates to the soil temperature of the sampling site. The sequence of UTL60 (the temperature causing 50% mortality after 60 min of exposure) from highest to least was O. yodai > P. fimata > P. armata ≈ P. tricampata > P. macfadyeni > P. pseudovanderdrifti. Heat stress inflicted on springtails can delay reproduction in all species, and two species showed a reduced egg production rate after heat exposure. For heat stress causing up to 30% mortality, the most heat-tolerant species did not have advantages over the least heat-tolerant species for what concerns the recovery of reproduction. The relation between UTL and recovery from heat stress is not linear. Our study provides evidence for a potential long-term effect of high-temperature exposure on euedaphic species of Collembola and highlights the need for further studies on the effects of global warming on soil-living organisms.

Keywords: Climate; Geography; Reproduction; Upper thermal limit.

MeSH terms

  • Animals
  • Arthropods*
  • Hot Temperature
  • Invertebrates
  • Reproduction
  • Soil
  • Temperature

Substances

  • Soil