The expanding genetic and clinical landscape associated with Meier-Gorlin syndrome

Eur J Hum Genet. 2023 Aug;31(8):859-868. doi: 10.1038/s41431-023-01359-z. Epub 2023 Apr 14.


High-throughput sequencing has become a standard first-tier approach for both diagnostics and research-based genetic testing. Consequently, this hypothesis-free testing manner has revealed the true breadth of clinical features for many established genetic disorders, including Meier-Gorlin syndrome (MGORS). Previously known as ear-patella short stature syndrome, MGORS is characterized by growth delay, microtia, and patella hypo/aplasia, as well as genital abnormalities, and breast agenesis in females. Following the initial identification of genetic causes in 2011, a total of 13 genes have been identified to date associated with MGORS. In this review, we summarise the genetic and clinical findings of each gene associated with MGORS and highlight molecular insights that have been made through studying patient variants. We note interesting observations arising across this group of genes as the number of patients has increased, such as the unusually high number of synonymous variants affecting splicing in CDC45 and a subgroup of genes that also cause craniosynostosis. We focus on the complicated molecular genetics for DONSON, where we examine potential genotype-phenotype patterns using the first 3D structural model of DONSON. The canonical role of all proteins associated with MGORS are involved in different stages of DNA replication and in addition to summarising how patient variants impact on this process, we discuss the potential contribution of non-canonical roles of these proteins to the pathophysiology of MGORS.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Congenital Microtia* / genetics
  • Female
  • Growth Disorders / diagnosis
  • Growth Disorders / genetics
  • Humans
  • Micrognathism* / genetics
  • Patella / abnormalities

Supplementary concepts

  • Meier-Gorlin syndrome
  • Absent patella