Alloreactive memory T cells, unlike naive T cells, fail to be restrained by transplantation tolerance protocols or regulatory T cells, and therefore represent a critical barrier to long-term graft acceptance. Using female mice sensitized by rejection of fully-mismatched paternal skin allografts, we show that subsequent semi-allogeneic pregnancy successfully reprograms memory fetus/graft-specific CD8+ T cells (TFGS) towards hypofunction in a manner that is mechanistically distinct from naive TFGS. Post-partum memory TFGS were durably hypofunctional, exhibiting enhanced susceptibility to transplantation tolerance induction. Furthermore, multi-omics studies revealed that pregnancy induced extensive phenotypic and transcriptional modifications in memory TFGS reminiscent of T cell exhaustion. Strikingly, at loci transcriptionally modified in both naive and memory TFGS during pregnancy, chromatin remodeling was observed exclusively in memory and not naive TFGS. These data reveal a novel link between T cell memory and hypofunction via exhaustion circuits and pregnancy-mediated epigenetic imprinting. This conceptual advance has immediate clinical relevance to pregnancy and transplantation tolerance.