Toward osteomimetic formation of calcium phosphate coatings with carbonated hydroxyapatite

Biomater Adv. 2023 Jun:149:213403. doi: 10.1016/j.bioadv.2023.213403. Epub 2023 Mar 24.

Abstract

Biomimetic production of coatings on various types of scaffolds is based mainly on simulated body fluid precipitation (SBF) of apatites, or, if the HCO3- is present, carbonated apatites. Recently, we proposed formation of calcium phosphates (CaP) precipitates by alkaline phosphatase (ALP) hydrolysing glycerophosphate in presence of calcium ions as an alternative to SBF. Since apatites synthesized in bone by the ALP activity contain carbonate anions, it was tempting to investigate whether the phosphatase method could be advanced into osteomimetic one. Therefore, taking example from the SBF studies, phosphatase incubation medium was enriched with carbonate ions at 4.2 and 27 mM concentration. X-ray diffraction of the precipitates disclosed peaks typical for hydroxyapatite (HAP). FTIR analysis showed that at both concentration of carbonate ions, apatites underwent both B and A substitution, more extensive at higher concentration. Thus, osteomimetic approach produced carbonated hydroxyapatites of the type encountered in bone tissue even at HCO3- concentration as low as 4.2 mM. Composite plates made of poly(ε-caprolactone) and mixture of β-tricalcium phosphate and hydroxyapatite at mass ratio of 1:0.5:0.5, respectively, were covered by CaP coatings, i.e., CaP-0, CaP-4.2, CaP-27, by incubation in phosphatase medium containing 0, 4.2 or 27 mM of NaHCO3, respectively. Pristine or coated PCL50 plates were used to study release of calcium and adsorption/desorption of proteins, or seeded with human bone marrow mesenchymal stem cells (hMSC) for study of cell adhesion, spreading and osteogenic differentiation. Introduction of carbonate into the CaP coatings significantly increased release of Ca2+ in a carbonate concentration-dependent manner; the release was up to 4 times higher, when compared to CaP-0 coating, and reached 0.41 ± 0.01 mM for CaP-27 after first 24 h. Coating CaP-4.2 yielded significantly higher adsorption of bovine serum albumin and cytochrome C than CaP-0. All of the CaP coatings improved significantly hMSC adhesion, however, only CaP-4.2 provided 2 times higher cell number than PCL50 after 2 weeks of culture. Interestingly, ALP activity calculated per cell number was the highest on pristine plates, presumably because hMSC differentiate preferentially into osteoblasts at lower seeding densities. It appears, therefore, that the osteomimetic approach may be useful for production of carbonated hydroxyapatite coatings, but requires further studies and replacing intestinal phosphatase used in this work with one originating from bone.

Keywords: Alkaline phosphatase; Biomimetic vs. Osteomimetic coatings; Calcium phosphate; Carbonated hydroxyapatite.

MeSH terms

  • Apatites
  • Calcium Phosphates
  • Carbonates
  • Coated Materials, Biocompatible / pharmacology
  • Durapatite*
  • Humans
  • Hydroxyapatites
  • Osteogenesis*
  • Phosphoric Monoester Hydrolases

Substances

  • Durapatite
  • Coated Materials, Biocompatible
  • calcium phosphate
  • Calcium Phosphates
  • Apatites
  • Hydroxyapatites
  • Carbonates
  • Phosphoric Monoester Hydrolases