SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx

Cell Rep Phys Sci. 2023 Apr 19;4(4):101346. doi: 10.1016/j.xcrp.2023.101346. Epub 2023 Apr 7.

Abstract

Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx. Moreover, we discover that while the Omicron spike-ACE2 affinity is comparable to that of the Delta variant, the Omicron spike interactions with heparan sulfate are significantly enhanced, giving rise to a ternary complex of spike-heparan sulfate-ACE2 with a large proportion of double-bound and triple-bound ACE2. Our findings suggest that SARS-CoV-2 variants evolve to be more dependent on heparan sulfate in viral attachment and infection. This discovery enables us to engineer a second-generation lateral-flow test strip that harnesses both heparin and ACE2 to reliably detect all variants of concern, including Omicron.

Keywords: ACE2; Brownian dynamics; COVID-19; SARS-CoV-2; biomimetic; biosensor; electrostatic potential; heparan sulfate; heparin; lateral-flow assay; spike.