Nutrigenomic profiling of reduced specification diets and phytogenic inclusion effects on critical toll-like receptor signaling, mitogen-activated protein kinase-apoptosis, and PI3K-Akt-mTOR gene components along the broiler gut

Poult Sci. 2023 Jun;102(6):102675. doi: 10.1016/j.psj.2023.102675. Epub 2023 Mar 29.

Abstract

The effects of concurrent reduction of dietary metabolizable energy (ME) and crude protein (CP) levels combined or not with the dietary inclusion of a phytogenic feed additive (PFA) were studied using a nutrigenomics approach. In particular, the expression of 26 critical genes relevant for inflammation control (TLR pathway), cellular apoptosis (MAPK pathway) cell growth and nutrient metabolism (PI3K-Akt-mTOR pathway) was profiled along the broiler intestine. Two dietary types (L and H) differing in metabolizable energy and crude protein levels (L: 95% and H: 100% of optimal Cobb 500 recommendations for ME and CP requirements) supplemented or not with PFA (- or +) and their interactions (L-, L+, H-, H+) were evaluated. There were only 3 total interactions (mTOR, IL8, and HRAS P < 0.05) between diet type and PFA inclusion indicating limited concurrent effects. Diet type, L upregulated genes related with inflammation mainly in the jejunum, ileum, and cecum (P < 0.05) and MAPK pathway in the ileum and cecum (P < 0.05). Moreover, diet type L negatively affected the expression of genes related to PI3K-Akt-mTOR pathway mainly in duodenum and cecum (P < 0.05). On the other hand, PFA inclusion downregulated (P < 0.05) genes related with TLR signaling pathway (TLR2B, MyD88, TLR3, IL8, LITAF) along the intestine and MAPK pathway genes (APO1, FOS) in jejunum (P < 0.05). Finally, PFA supplementation regulated nutrient sensing and metabolism in the cecum in a manner perceived as beneficial for growth. In conclusion, the study results highlight that the reduced ME and CP specifications, especially in the absence of PFA, regulate inflammation, apoptosis and nutrient metabolism processes at homeostatic control levels that hinder maximizing the availability of dietary energy and nutrients for growth purposes. Inclusion of PFA helped to adjust the respective homeostatic responses and control to levels supporting broiler performance, especially at reduced specification diets.

Keywords: apoptosis; diet type; inflammation; metabolism; phytogenic.

MeSH terms

  • Animal Feed / analysis
  • Animal Nutritional Physiological Phenomena
  • Animals
  • Apoptosis
  • Chickens / physiology
  • Diet / veterinary
  • Dietary Supplements
  • Digestion
  • Gene Components
  • Interleukin-8
  • Mitogen-Activated Protein Kinases
  • Nutrigenomics
  • Phosphatidylinositol 3-Kinases* / genetics
  • Phosphatidylinositol 3-Kinases* / pharmacology
  • Proto-Oncogene Proteins c-akt* / genetics
  • Signal Transduction
  • TOR Serine-Threonine Kinases / genetics
  • Toll-Like Receptors / genetics

Substances

  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinases
  • Interleukin-8
  • Toll-Like Receptors
  • TOR Serine-Threonine Kinases