Low-grade heat represents a significant form of energy loss; thermocells (TECs) utilizing the thermogalvanic effect can convert thermal energy into electricity without generating vibrations, noise, or waste emissions, making them a promising energy conversion technology for efficiently harvesting low-grade heat. Despite recent advancements, the reliance on high-cost platinum electrodes in TECs has considerably hindered their widespread adoption. Developing cost-effective electrodes that maintain the same thermoelectrochemical performance is crucial for the successful application of TECs. In this review article, the exploration of MXene materials as TEC electrodes is discussed first, emphasizing the immense potential of the MXene family for low-grade heat harvesting applications. Next, recent research on carbon-based electrodes is summarized, and morphological and structural optimizations are comprehensively discussed aiming at enhancing the thermoelectrochemical performance of TECs. In the concluding section, the challenges are outlined and future perspectives are offered, which provide valuable insights into the ongoing development of high-performance TEC electrodes using MXene and carbon-based materials.
Keywords: Ti3C2Tx MXene; flexible electrodes; nanocarbons; nanocomposites; thermocells.
© 2023 Wiley-VCH GmbH.