Introduction: Cancers assume a variety of distinct histologies, and may originate from a myriad of sites including solid organs, hematopoietic cells, and connective tissue. Clinical decision-making based on consensus guidelines such as the National Comprehensive Cancer Network (NCCN) is often predicated on a specific histologic and anatomic diagnosis, supported by clinical features and pathologist interpretation of morphology and immunohistochemical (IHC) staining patterns. However, in patients with nonspecific morphologic and IHC findings-in addition to ambiguous clinical presentations such as recurrence versus new primary-a definitive diagnosis may not be possible, resulting in the patient being categorized as having a cancer of unknown primary (CUP). Therapeutic options and clinical outcomes are poor for patients with CUP, with a median survival of 8-11 months.
Methods: Here, we describe and validate the Tempus Tumor Origin (Tempus TO) assay, an RNA-sequencing-based machine learning classifier capable of discriminating between 68 clinically relevant cancer subtypes. Model accuracy was assessed using primary and/or metastatic samples with known subtype.
Results: We show that the Tempus TO model is 91% accurate when assessed on both a retrospectively held out cohort and a set of samples sequenced after model freeze that collectively contained 9210 total samples with known diagnoses. When evaluated on a cohort of CUPs, the model recapitulated established associations between genomic alterations and cancer subtype.
Discussion: Combining diagnostic prediction tests (e.g., Tempus TO) with sequencing-based variant reporting (e.g., Tempus xT) may expand therapeutic options for patients with cancers of unknown primary or uncertain histology.
© 2023. The Author(s).