An Antibacterial and Anti-Oxidative Hydrogel Dressing for Promoting Diabetic Wound Healing and Real-Time Monitoring Wound pH Conditions with a NIR Fluorescent Imaging System

Adv Healthc Mater. 2023 Sep;12(24):e2300431. doi: 10.1002/adhm.202300431. Epub 2023 May 14.

Abstract

The design and synthesis of multifunctional chitosan hydrogels based on polymerized ionic liquid and a near-infrared (NIR) fluorescent probe (PIL-CS) is a promising strategy, which not only prevents the transition from acute to chronic wounds, but also provides prompt measures regarding microenvironmental alterations in chronic wounds. PIL-CS hydrogel can real-time visualize wound pH through in vivo NIR fluorescent imaging and also feature the pH-responsive sustained drug release, such as antioxidant, to eliminate reactive oxygen species (ROS) and to boost diabetic wound healing. PIL-CS hydrogel is specific, sensitive, stable, and reversible in response to pH changes at the wound site. It, therefore, enables real-time monitoring for a dynamic pH change in the microenvironment of irregular wounds. PIL-CS hydrogel is also designed to possess many merits including high water containment and swelling rate, good biocompatibility, electrical conductivity, antifreeze, tissue adhesion, hemostatic performance, and efficient antibacterial activity against MRSA. In vivo studies showed that PIL-CS hydrogel provided fast diabetic wound healing support, promoted vascular endothelial growth factor (VEGF) production, and reduced ROS and tumor necrosis factor (TNF-α) generation. The results support that the hydrogels coupled with NIR fluorescent probes can be an excellent diabetic wound dressing for enhancing and real-time monitoring skin restoration and regeneration.

Keywords: antibacterial; antioxidant; diabetic wound; injectable; real-time monitoring.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bandages
  • Diabetes Mellitus*
  • Fluorescent Dyes
  • Hydrogels* / pharmacology
  • Hydrogen-Ion Concentration
  • Reactive Oxygen Species
  • Vascular Endothelial Growth Factor A
  • Wound Healing

Substances

  • Hydrogels
  • Reactive Oxygen Species
  • Vascular Endothelial Growth Factor A
  • Fluorescent Dyes
  • Anti-Bacterial Agents