Metal nanoparticles are widely used in catalysis. Loading metal nanoparticles into polymer brushes has aroused wide attention, but regulation of catalytic performance still needs to be improved. The novel diblock polymer brushes, polystyrene@sodium polystyrene sulfonate-b-poly (N-isopropylacrylamide) (PSV@PSS-b-PNIPA) and PSV@PNIPA-b-PSS with reversed block sequence, were prepared by surface initiated photoiniferter-mediated polymerization (SI-PIMP) and used as nanoreactors to load silver nanoparticles (AgNPs). The block sequence caused the difference of conformation and further affected the catalytic performance. PSV@PNIPA-b-PSS@Ag was found to be able to control the amount of AgNPs exposed to external reactant of 4-nitrophenol at different temperatures to achieve regulation of the reaction rate due to the hydrogen bonds and further physical crosslinking between PNIPA and PSS.
Keywords: diblock polymer brush; hydrogen bond; silver catalyst; temperature response.