Polymer Screening for Efficient Water Cut Reduction in a Sandstone Oilfield in Kazakhstan

Polymers (Basel). 2023 Apr 21;15(8):1969. doi: 10.3390/polym15081969.

Abstract

Polymer flooding is one of the most widely used and effective enhanced oil recovery techniques. It can improve the macroscopic sweep efficiency of a reservoir by controlling the fractional flow of water. The applicability of polymer flooding for one of the sandstone fields in Kazakhstan was evaluated in this study and polymer screening was carried out to choose the most appropriate polymer among four hydrolyzed polyacrylamide polymer samples. Polymer samples were prepared in Caspian seawater (CSW) and assessed based on rheology, thermal stability, sensitivity to non-ionic materials and oxygen, and static adsorption. All the tests were performed at a reservoir temperature of 63 °C. Based on the results of the screening study, tolerance of a polymer towards high-temperature reservoir conditions, resistance to bacterial activity and dissolved oxygen present in make-up brine, chemical degradation, and reduced adsorption on rock surface were considered the most important screening parameters. As a result of this screening study, one out of four polymers was selected for the target field as it showed a negligible effect of bacterial activity on thermal stability. The results of static adsorption also showed 13-14% lower adsorption of the selected polymer compared to other polymers tested in the study. The results of this study demonstrate important screening criteria to be followed during polymer selection for an oilfield as the polymer should be selected based on not only polymer characteristics but also the polymer interactions with the ionic and non-ionic components of the make-up brine.

Keywords: HPAM; adsorption; polymer flooding; rheology; thermal stability.

Grants and funding