Box-Behnken modeling and optimization of visible-light photocatalytic removal of methylene blue by ZnO-BiFeO3 composite

Environ Sci Pollut Res Int. 2023 Jun;30(26):68084-68100. doi: 10.1007/s11356-023-26894-6. Epub 2023 Apr 29.

Abstract

Box-Behnken experimental design was utilized to model and optimize the photocatalytic removal of methylene blue (MB) using ZnO-BiFeO3 composite under visible light (LED). Three catalysts with different ZnO:BiFeO3 molar ratios (2:1, 1:2, and 1:1) were synthesized successfully using the hydrothermal method. The structural, morphological, and optical properties of the synthesized photocatalysts were analyzed by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectra (FT-IR), Ultraviolet Visible Spectrometer (UV-vis), Transmission Electron Microscopy(TEM), High-Resolution Transmission Electron Microscopy (HR-TEM), and Photoluminescence (PL) Spectrophotometry. FESEM showed the relatively uniform distribution of BiFeO3 crystalline particles on ZnO ones. UV-vis analysis showed that the photocatalytic performance of pure ZnO and BiFeO3 under visible light irradiation is weak, while ZnO-BiFeO3 with a 2:1 molar ratio composite with a bandgap of about 2.37 eV showed high performance. This improved photocatalytic activity may be due to the heterogeneous synergistic effect of the p-n junction. In order to optimize the experimental conditions, four factors of initial MB concentration (5 to 20 mg/L), pH (3 to 12), catalyst dosage (0.5 to 1.25 mg/L), and light intensity (4 to 18 W) were selected as independent input variables. Box-Behnken experimental design method (BBD) suggested a quadratic polynomial equation to fit the experimental data. The results of the analysis of variance (ANOVA) confirmed the goodness of fit for the suggested model (predicted- and adjusted-R2 0.99). The optimum conditions for maximizing the photocatalytic MB degradation were found to be an initial MB concentration of 11 mg/L, pH of 11.7, catalyst dosage of 0.716 mg/L, and light intensity of 11.4 W. Under the optimum conditions, the highest photocatalytic MB degradation of 62.9% was obtained, which is in reasonable agreement with the predicted value of 69%.

Keywords: Box-Behnken experimental design; Methylene blue; Optimization; Photocatalytic removal; ZnO-BiFeO3 composite.

MeSH terms

  • Light
  • Methylene Blue / chemistry
  • Microscopy, Electron, Transmission
  • Spectroscopy, Fourier Transform Infrared
  • Zinc Oxide* / chemistry

Substances

  • Zinc Oxide
  • Methylene Blue