Parabolic avalanche scaling in the synchronization of cortical cell assemblies

Nat Commun. 2023 May 3;14(1):2555. doi: 10.1038/s41467-023-37976-x.

Abstract

Neurons in the cerebral cortex fire coincident action potentials during ongoing activity and in response to sensory inputs. These synchronized cell assemblies are fundamental to cortex function, yet basic dynamical aspects of their size and duration are largely unknown. Using 2-photon imaging of neurons in the superficial cortex of awake mice, we show that synchronized cell assemblies organize as scale-invariant avalanches that quadratically grow with duration. The quadratic avalanche scaling was only found for correlated neurons, required temporal coarse-graining to compensate for spatial subsampling of the imaged cortex, and suggested cortical dynamics to be critical as demonstrated in simulations of balanced E/I-networks. The corresponding time course of an inverted parabola with exponent of χ = 2 described cortical avalanches of coincident firing for up to 5 s duration over an area of 1 mm2. These parabolic avalanches maximized temporal complexity in the ongoing activity of prefrontal and somatosensory cortex and in visual responses of primary visual cortex. Our results identify a scale-invariant temporal order in the synchronization of highly diverse cortical cell assemblies in the form of parabolic avalanches.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Cerebral Cortex* / diagnostic imaging
  • Cerebral Cortex* / physiology
  • Cortical Synchronization
  • Mice
  • Models, Neurological*
  • Neurons / physiology
  • Wakefulness