Discovery of 3,7-dimethoxyflavone that inhibits liver fibrosis based on dual mechanisms of antioxidant and inhibitor of activated hepatic stellate cell

Free Radic Biol Med. 2023 Aug 1:204:195-206. doi: 10.1016/j.freeradbiomed.2023.05.001. Epub 2023 May 3.

Abstract

The important pathway toward liver fibrosis is the TGF-β1-induced activation of hepatic stellate cells (HSCs). To discover chemicals to inhibit liver fibrosis, we screened 3000 chemicals using cell array system where human HSCs line LX2 cells are activated with TGF-β1. We discovered 3,7-dimethoxyflavone (3,7-DMF) as a chemical to inhibit TGF-β1-induced activation of HSCs. In the thioacetamide (TAA)-induced mouse liver fibrosis model, 3,7-DMF treatment via intraperitoneal or oral administration prevented liver fibrosis as well as reversed the established fibrosis in the separate experiments. It also reduced liver enzyme elevation, suggesting protective effect on hepatocytes because it has antioxidant effect. Treatment with 3,7-DMF induced antioxidant genes, quenches ROS away, and improved the hepatocyte condition that was impaired by H2O2 as reflected by restoration of HNF-4α and albumin. In the TAA-mouse liver injury model also, TAA significantly increased ROS in the liver which led to decrease of albumin and nuclear expression of HNF-4α, increase of TGF-β1 and hepatocytes death, accumulation of lipid, and extra-nuclear localization of HMGB1. Treatment of 3,7-DMF normalized all these pathologic findings and prevented or resolved liver fibrosis. In conclusion, we discovered 3,7-DMF that inhibits liver fibrosis based on dual actions; antioxidant and inhibitor of TGF-β1-induced activation of HSCs.

Keywords: 3,7-Dimethoxyflavone; Hepatocyte; Liver fibrosis; Oral administration; Oxidative stress; Reactive oxygen species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants* / metabolism
  • Antioxidants* / pharmacology
  • Disease Models, Animal
  • Hepatic Stellate Cells* / metabolism
  • Humans
  • Hydrogen Peroxide / metabolism
  • Liver / metabolism
  • Liver Cirrhosis / chemically induced
  • Liver Cirrhosis / drug therapy
  • Liver Cirrhosis / genetics
  • Mice
  • Reactive Oxygen Species / metabolism
  • Transforming Growth Factor beta1 / genetics
  • Transforming Growth Factor beta1 / metabolism

Substances

  • Antioxidants
  • Transforming Growth Factor beta1
  • Reactive Oxygen Species
  • 3,7-dimethoxyflavone
  • Hydrogen Peroxide