Accessibility of the three-year comprehensive prevention and control of brucellosis in Ningxia: a mathematical modeling study

BMC Infect Dis. 2023 May 5;23(1):292. doi: 10.1186/s12879-023-08270-4.

Abstract

Background: Brucellosis is a chronic zoonotic disease, and Ningxia is one of the high prevalence regions in China. To mitigate the spread of brucellosis, the government of Ningxia has implemented a comprehensive prevention and control plan (2022-2024). It is meaningful to quantitatively evaluate the accessibility of this strategy.

Methods: Based on the transmission characteristics of brucellosis in Ningxia, we propose a dynamical model of sheep-human-environment, which coupling with the stage structure of sheep and indirect environmental transmission. We first calculate the basic reproduction number [Formula: see text] and use the model to fit the data of human brucellosis. Then, three widely applied control strategies of brucellosis in Ningxia, that is, slaughtering of sicked sheep, health education to high risk practitioners, and immunization of adult sheep, are evaluated.

Results: The basic reproduction number is calculated as [Formula: see text], indicating that human brucellosis will persist. The model has a good alignment with the human brucellosis data. The quantitative accessibility evaluation results show that current brucellosis control strategy may not reach the goal on time. "Ningxia Brucellosis Prevention and Control Special Three-Year Action Implementation Plan (2022-2024)" will be achieved in 2024 when increasing slaughtering rate [Formula: see text] by 30[Formula: see text], increasing health education to reduce [Formula: see text] to 50[Formula: see text], and an increase of immunization rate of adult sheep [Formula: see text] by 40[Formula: see text].

Conclusion: The results demonstrate that the comprehensive control measures are the most effective for brucellosis control, and it is necessary to further strengthen the multi-sectoral joint mechanism and adopt integrated measures to prevention and control brucellosis. These results can provide a reliable quantitative basis for further optimizing the prevention and control strategy of brucellosis in Ningxia.

Keywords: Accessibility evaluation; Basic reproduction number; Brucellosis; Control strategy; Dynamical modeling.

MeSH terms

  • Animals
  • Basic Reproduction Number
  • Brucellosis* / epidemiology
  • Brucellosis* / prevention & control
  • China / epidemiology
  • Humans
  • Models, Theoretical
  • Sheep
  • Vaccination / veterinary