Historical DNA solves century-old mystery on sessility in freshwater gastropods

Mol Phylogenet Evol. 2023 Aug:185:107813. doi: 10.1016/j.ympev.2023.107813. Epub 2023 May 13.

Abstract

Extinction rates are increasing unabatedly but resources available for conservation action are limited. Therefore, some conservationists are pushing for ecology- and evolution-based conservation choices, prioritizing taxa with phylogenetic and trait-based originality. Extinction of original taxa may result in a disproportionate loss of evolutionary innovations and potentially prevent transformative changes in living systems. Here, we generated historical DNA data from an almost 120-year-old syntype of the enigmatic sessile snail Helicostoa sinensis from the Three Gorges region of the Yangtze River (PR China), using a next-generation sequencing protocol developed for ancient DNA. In a broader phylogenetic context, we assessed the phylogenetic and trait-based originality of this enigmatic taxon to solve the century-old puzzle of sessility in freshwater gastropods. Our multi-locus data confirm the phylogenetic and trait-based originality of H. sinensis. It is an ultra-rare, subfamily-level taxon (Helicostoinae stat. nov.) within the family Bithyniidae, which exhibits the evolutionary innovation of sessility. While we conservatively classify H. sinensis as "Critically Endangered", there is mounting evidence of the biological annihilation of this endemic species. Although rapidly rising extinction rates in invertebrates are increasingly recognized, the potential loss of originality in these "little things that run the world" has received little attention. We therefore call for comprehensive surveys of originality in invertebrates, particularly from extreme environments such as rapids of large rivers, as a basis for urgently needed ecology- and evolution-based conservation decisions.

Keywords: Evolutionary innovation; Extinction; Mollusca; Originality; Truncatelloidea.

MeSH terms

  • Animals
  • DNA / genetics
  • Fresh Water*
  • Phylogeny
  • Rivers*
  • Snails / genetics

Substances

  • DNA