The prefrontal cortex (PFC) has dramatically expanded in primates, but its organization and interactions with other brain regions are only partially understood. We performed high-resolution connectomic mapping of the marmoset PFC and found two contrasting corticocortical and corticostriatal projection patterns: "patchy" projections that formed many columns of submillimeter scale in nearby and distant regions and "diffuse" projections that spread widely across the cortex and striatum. Parcellation-free analyses revealed representations of PFC gradients in these projections' local and global distribution patterns. We also demonstrated column-scale precision of reciprocal corticocortical connectivity, suggesting that PFC contains a mosaic of discrete columns. Diffuse projections showed considerable diversity in the laminar patterns of axonal spread. Altogether, these fine-grained analyses reveal important principles of local and long-distance PFC circuits in marmosets and provide insights into the functional organization of the primate brain.
Keywords: AAV; STPT; anterograde tracer; association cortex; cortical column; non-human primate; nonnegative matrix factorization; serial two-photon tomography; topographic connectivity; tractography.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.