The rough-toothed dolphin (Steno bredanensis) is characterized by having teeth covered in finely wrinkled vertical ridges, which is a general manifestation of amelogenesis imperfecta. The rough surfaces are hypothesized to be an evolutionary morphological trait of feeding adaptation to increase the dolphin's grip on prey. Here, we assembled a rough-toothed dolphin genome and performed the comparative genomic analysis to reveal the genetic basis of the special enamel. Results showed that genes related to enamel development or dental diseases have undergone diversified adaptive changes that may shape the special enamel morphology of this dolphin species, including positive selection (CLDN19, PRKCE, SSUH2, and WDR72), rapid evolution (LAMB3), or unique amino acid substitutions (AMTN, ENAM, MMP20, and KLK4). Meanwhile, the historical demography of rough-toothed dolphin indicated several distinct population fluctuations associated with climate change. The genome-wide heterozygosity of this dolphin is in the middle of all published data for cetaceans. Although the population is considerable, there may be population or subspecies differentiation, and with the global warming and the increasing disturbance of human activities, we should pay more attention to protection in the future. Together, our study brings new insights into the genetic mechanisms that may have driven the evolution of the special enamel morphology in rough-toothed dolphins and provides the first results of genetic heterozygosity and population historical dynamics of this species, which have important guiding implications for the conservation of this dolphin species.
Keywords: adaptive evolution; amelogenesis imperfecta; cetaceans; genome; rough-toothed dolphin.
© 2023 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.