Transcriptome-wide gene-gene interaction associations elucidate pathways and functional enrichment of complex traits

PLoS Genet. 2023 May 22;19(5):e1010693. doi: 10.1371/journal.pgen.1010693. eCollection 2023 May.

Abstract

It remains unknown to what extent gene-gene interactions contribute to complex traits. Here, we introduce a new approach using predicted gene expression to perform exhaustive transcriptome-wide interaction studies (TWISs) for multiple traits across all pairs of genes expressed in several tissue types. Using imputed transcriptomes, we simultaneously reduce the computational challenge and improve interpretability and statistical power. We discover (in the UK Biobank) and replicate (in independent cohorts) several interaction associations, and find several hub genes with numerous interactions. We also demonstrate that TWIS can identify novel associated genes because genes with many or strong interactions have smaller single-locus model effect sizes. Finally, we develop a method to test gene set enrichment of TWIS associations (E-TWIS), finding numerous pathways and networks enriched in interaction associations. Epistasis is may be widespread, and our procedure represents a tractable framework for beginning to explore gene interactions and identify novel genomic targets.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Epistasis, Genetic*
  • Gene Regulatory Networks / genetics
  • Genome-Wide Association Study / methods
  • Multifactorial Inheritance / genetics
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Transcriptome* / genetics