Ammonia production by isolated mouse proximal tubules perfused in vitro. Effect of metabolic acidosis

J Clin Invest. 1986 Jul;78(1):124-9. doi: 10.1172/JCI112540.

Abstract

We examined the effects of metabolic acidosis in vivo and reduced bath and luminal pH in vitro on total NH3 (NH3 + NH+4) production rates by isolated mouse proximal tubule segments. Midproximal tubule segments were obtained from mice with NH4Cl-induced metabolic acidosis and from nonacidotic controls. The segments were perfused with modified Krebs-Ringer bicarbonate (KRB) buffer, incubated in KRB buffer containing 0.5 mM L-glutamine and 1.0 mM sodium acetate, and gassed with 95% O2 and 5% CO2. Isolated unperfused and perfused proximal tubules from acidotic mice produced total NH3 at higher rates than corresponding tubules from nonacidotic mice. Perfusion of the tubular lumen stimulated total NH3 production by tubules from both acidotic and nonacidotic mice. In contrast, lowering the bath pH to 7.0 by lowering the HCO3- concentration increased total NH3 production rates by tubules from nonacidotic mice but not by tubules from acidotic mice. Reducing the HCO3- concentration of the bath buffer to 10 mM while maintaining a pH of 7.4 had no significant effect on total NH3 production by tubules from nonacidotic mice. Lowering the luminal fluid pH by reducing the perfusate HCO-3 from 25 mM to 10, 5, or 1.2 mM while maintaining a bath pH of 7.4 lowered collected luminal fluid pH but had no effect on total NH3 production by proximal tubules from nonacidotic mice. These observations demonstrated that metabolic acidosis in vivo stimulated total NH3 production in isolated mouse proximal tubule segments and that low peritubular pH and HCO-3 stimulated total NH3 production by proximal tubule segments from nonacidotic mice in vitro.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acidosis / metabolism*
  • Ammonia / biosynthesis*
  • Ammonium Chloride / pharmacology
  • Animals
  • Hydrogen-Ion Concentration
  • In Vitro Techniques
  • Kidney Tubules, Proximal / metabolism*
  • Male
  • Mice
  • Perfusion
  • Time Factors

Substances

  • Ammonium Chloride
  • Ammonia