Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus

J Comp Neurol. 1986 Jun 15;248(3):348-59. doi: 10.1002/cne.902480305.


In the cricket, Teleogryllus oceanicus, the dendritic arborizations of an identified auditory interneuron (Int-1) are normally restricted to the ipsilateral auditory neuropile; unilateral deafferentation causes the medial portion of the dendritic field to sprout across the midline and make functional connections with the contralateral auditory neuropile (Hoy et al., '78: Soc. Neurosci. Abstr. 4:115, '85: Proc. Natl. Acad. Sci. USA 82:7772-7786; Hoy and Moiseff, '79: Soc. Neurosci. Abstr. 5:163). We have found that regeneration of the auditory afferents also results in an aberrant pattern of innervation of Int-1. Crickets were unilaterally deafferented during postembryonic development by crushing or cutting the auditory nerve. Regeneration of afferent-to-Int-1 connections was tested behaviorally. Of 86 nerve-crushed crickets tested as adults in the behavioral assay, 66% showed functional regeneration of the afferents. Similar results were obtained from the nerve-cut group. However, morphological investigations demonstrated that most of the regenerates still retained the aberrant contralateral dendritic projection. Electrophysiological recordings from these Int-1s showed that not only are some of them driven by their regenerated auditory afferents (the normal pathway) but that they retain their excitability via their contralateral dendrites (the aberrant pathway). This demonstrates that reinnervation of Int-1 by its normal afferent pool neither causes retraction nor prevents the formation of connections made with foreign, contralateral afferents. When the contralateral afferent pool was removed after Int-1 had sprouted, the sprouts remained present, but preliminary results suggest that if the contralateral afferents are removed before Int-1 is deafferented, sprouts are not formed. The results are discussed in relation to the roles of competition and conservation of membrane area in controlling synapse formation.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Auditory Pathways / physiology
  • Gryllidae / physiology*
  • Hearing / physiology
  • Interneurons / physiology
  • Nerve Regeneration*
  • Nervous System Physiological Phenomena*
  • Neuronal Plasticity*
  • Orthoptera / physiology*
  • Synapses / physiology