Objective: The study aim was to develop and validate models to predict clinically significant posthepatectomy liver failure (PHLF) and serious complications [a Comprehensive Complication Index (CCI)>40] using preoperative and intraoperative variables.
Background: PHLF is a serious complication after major hepatectomy but does not comprehensively capture a patient's postoperative course. Adding the CCI as an additional metric can account for complications unrelated to liver function.
Methods: The cohort included adult patients who underwent major hepatectomies at 12 international centers (2010-2020). After splitting the data into training and validation sets (70:30), models for PHLF and a CCI>40 were fit using logistic regression with a lasso penalty on the training cohort. The models were then evaluated on the validation data set.
Results: Among 2192 patients, 185 (8.4%) had clinically significant PHLF and 160 (7.3%) had a CCI>40. The PHLF model had an area under the curve (AUC) of 0.80, calibration slope of 0.95, and calibration-in-the-large of -0.09, while the CCI model had an AUC of 0.76, calibration slope of 0.88, and calibration-in-the-large of 0.02. When the models were provided only preoperative variables to predict PHLF and a CCI>40, this resulted in similar AUCs of 0.78 and 0.71, respectively. Both models were used to build 2 risk calculators with the option to include or exclude intraoperative variables ( PHLF Risk Calculator; CCI>40 Risk Calculator ).
Conclusions: Using an international cohort of major hepatectomy patients, we used preoperative and intraoperative variables to develop and internally validate multivariable models to predict clinically significant PHLF and a CCI>40 with good discrimination and calibration.
Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.