Segmentation of Anatomical Structures of the Left Heart from Echocardiographic Images Using Deep Learning

Diagnostics (Basel). 2023 May 9;13(10):1683. doi: 10.3390/diagnostics13101683.

Abstract

Knowledge about the anatomical structures of the left heart, specifically the atrium (LA) and ventricle (i.e., endocardium-Vendo-and epicardium-LVepi) is essential for the evaluation of cardiac functionality. Manual segmentation of cardiac structures from echocardiography is the baseline reference, but results are user-dependent and time-consuming. With the aim of supporting clinical practice, this paper presents a new deep-learning (DL)-based tool for segmenting anatomical structures of the left heart from echocardiographic images. Specifically, it was designed as a combination of two convolutional neural networks, the YOLOv7 algorithm and a U-Net, and it aims to automatically segment an echocardiographic image into LVendo, LVepi and LA. The DL-based tool was trained and tested on the Cardiac Acquisitions for Multi-Structure Ultrasound Segmentation (CAMUS) dataset of the University Hospital of St. Etienne, which consists of echocardiographic images from 450 patients. For each patient, apical two- and four-chamber views at end-systole and end-diastole were acquired and annotated by clinicians. Globally, our DL-based tool was able to segment LVendo, LVepi and LA, providing Dice similarity coefficients equal to 92.63%, 85.59%, and 87.57%, respectively. In conclusion, the presented DL-based tool proved to be reliable in automatically segmenting the anatomical structures of the left heart and supporting the cardiological clinical practice.

Keywords: U-Net; YOLOv7; convolutional neural networks; deep learning; echocardiography; left heart segmentation.

Grants and funding

This research received no external funding.