The IP6K Inhibitor LI-2242 Ameliorates Diet-Induced Obesity, Hyperglycemia, and Hepatic Steatosis in Mice by Improving Cell Metabolism and Insulin Signaling

Biomolecules. 2023 May 20;13(5):868. doi: 10.3390/biom13050868.

Abstract

Obesity and nonalcoholic fatty liver disease (NAFLD) are global health concerns, and thus, drugs for the long-term treatment of these diseases are urgently needed. We previously discovered that the inositol pyrophosphate biosynthetic enzyme IP6K1 is a target in diet-induced obesity (DIO), insulin resistance, and NAFLD. Moreover, high-throughput screening (HTS) assays and structure-activity relationship (SAR) studies identified LI-2242 as a potent IP6K inhibitor compound. Here, we tested the efficacy of LI-2242 in DIO WT C57/BL6J mice. LI-2242 (20 mg/kg/BW daily, i.p.) reduced body weight in DIO mice by specifically reducing the accumulation of body fat. It also improved glycemic parameters and reduced hyperinsulinemia. LI-2242-treated mice displayed reduced the weight of various adipose tissue depots and an increased expression of metabolism- and mitochondrial-energy-oxidation-inducing genes in these tissues. LI-2242 also ameliorated hepatic steatosis by reducing the expression of genes that enhance lipid uptake, lipid stabilization, and lipogenesis. Furthermore, LI-2242 enhances the mitochondrial oxygen consumption rate (OCR) and insulin signaling in adipocytes and hepatocytes in vitro. In conclusion, the pharmacologic inhibition of the inositol pyrophosphate pathway by LI-2242 has therapeutic potential in obesity and NAFLD.

Keywords: IP6K1; LI-2242; NAFLD; insulin resistance; obesity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diet
  • Diphosphates / metabolism
  • Hyperglycemia* / metabolism
  • Inositol / metabolism
  • Insulin / metabolism
  • Insulin Resistance* / physiology
  • Lipid Metabolism
  • Lipids
  • Liver / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Non-alcoholic Fatty Liver Disease* / etiology
  • Non-alcoholic Fatty Liver Disease* / metabolism
  • Obesity / etiology
  • Obesity / genetics

Substances

  • diphosphoric acid
  • Diphosphates
  • Insulin
  • Lipids
  • Inositol