Background and Objectives: The risk of autonomic dysfunction with COVID-19 vaccines used worldwide in the COVID-19 pandemic remains a topic of debate. Heart rate variability has a number of parameters that can be used to assess autonomic nervous system dynamics. The aim of this study was to investigate the effect of a COVID-19 vaccine (Pfizer-BioNTech) on heart rate variability and autonomic nervous system parameters, and the duration of the effect. Materials and Methods: A total of 75 healthy individuals who visited an outpatient clinic to receive the COVID-19 vaccination were included in this prospective observational study. Heart rate variability parameters were measured before vaccination and on days 2 and 10 after vaccination. SDNN, rMSSD and pNN50 values were evaluated for time series analyses, and LF, HF, and LF/HV values for frequency-dependent analyses. Results: The SDNN and rMSDD values declined significantly on day 2 after vaccination, while the pNN50 and LF/HF values increased significantly on day 10. The values at pre-vaccination and at day 10 were comparable. The pNN50 and LF/HF values declined significantly on day 2 and increased significantly on day 10. The values at pre-vaccination and at day 10 were comparable. Conclusions: This study showed that the decline in HRV observed with COVID-19 vaccination was temporary, and that the Pfizer-BioNTech COVID-19 vaccination did not cause permanent autonomic dysfunction.
Keywords: COVID-19; Pfizer-BioNTech; autonomic dysfunctions; heart rate variability; vaccine.