Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jul;15(4):305-20.
doi: 10.1016/0160-5402(86)90010-0.

Electrolysis-induced myocardial dysfunction. A novel method for the study of free radical mediated tissue injury

Free article

Electrolysis-induced myocardial dysfunction. A novel method for the study of free radical mediated tissue injury

C V Jackson et al. J Pharmacol Methods. 1986 Jul.
Free article

Abstract

Oxygen-derived free radicals and other oxidizing species are thought to be involved in inflammation and ischemic tissue injuries. Recently, oxygen-derived free radicals also have been implicated in tissue injury of the myocardium subjected to ischemia/reperfusion. The purpose of this investigation was to determine if electrolysis of a physiological buffer would serve as a source of free radicals, and if these radicals would lead to alterations in myocardial function. Isolated Langendorff-perfused rabbit hearts perfused with buffer subjected to a 20 mA D.C. current for 2 min demonstrated significant increases in coronary perfusion pressure (37 +/- 6 mmHg), left ventricular end diastolic pressure (41 +/- 7 mmHg), and loss in left ventricular developed pressure (35 +/- 5%). The free radical scavengers, superoxide dismutase and a combination of tryptophan plus glycine, were effective in protecting the hearts from the effects of electrolysis. The presence of free radicals was semiquantitated with a radical-luminol chemiluminescent assay. In this assay a variety of radical scavengers and antioxidants were effective (i.e., dimethyl sulfoxide, nitro blue tetrazolium, ascorbate, superoxide dismutase, 1, 3-diphenylisobenzofuran, and glycine, catalase), whereas mannitol and tryptophan were not effective. The data indicate that electrolysis of a physiological buffer produces a milieu containing several reactive oxygen species or free radicals that have the potential to produce alterations in a biological system. This method has the advantage over existing protocols for the generation of radicals in that it is a blood-free and an enzyme-free system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources