Prenatal DEHP Exposure Induces Premature Testicular Aging by Promoting Leydig Cell Senescence through the MAPK Signaling Pathways

Adv Biol (Weinh). 2023 Oct;7(10):e2300130. doi: 10.1002/adbi.202300130. Epub 2023 May 28.

Abstract

Previous studies show that prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure induces premature testicular aging. However, the evidence is weak, and the underlying mechanisms remain unclear. p38/extracellular signal-regulated kinase (ERK)/c-Jun NH(2)-terminal kinase (JNK) MAPK pathways participate in aging. Leydig cell (LC) senescence results in testicular aging. Whether prenatal DEHP exposure induces premature testicular aging by promoting LC senescence warrants further study. Here, male mice undergo prenatal exposure to 500 mg per kg per day DEHP, and TM3 LCs are treated with 200 µm mono (2-ethylhexyl) phthalate (MEHP). MAPK pathways, testicular toxicity, and senescent phenotypes (β-gal activity, p21, p16, and cell cycle) of male mice and LCs are explored. Prenatal DEHP exposure induces premature testicular aging in middle-aged mice (poor genital development, reduced testosterone synthesis, poor semen quality, increased β-gal activity, and upregulated expression of p21 and p16). MEHP induces LCs senescence (cell cycle arrest, increased β-gal activity, and upregulated expression of p21). p38 and JNK pathways are activated, and the ERK pathway is inactivated. In conclusion, prenatal DEHP exposure induces premature testicular aging by promoting LC senescence through MAPK signaling pathways.

Keywords: DEHP; Leydig cells; cell senescence; testicular aging.