Comprehensive analysis on the diagnostic role of circulatory exosome-based miR-92a-3p for osteoblastic metastases in prostate adenocarcinoma

J Mol Recognit. 2023 Aug;36(8):e3042. doi: 10.1002/jmr.3042. Epub 2023 May 31.

Abstract

Prostate adenocarcinoma (PRAD) is the second leading cause of death in men and the key factor that attributes to the severity and higher mortality rates is the tumor's ability to promote osteoblastic metastases (OM). Currently, no blood-based biomarkers are present that bridges the crosstalk between PRAD and OM progression. Conversely, circulatory microRNAs (miRNAs) are gaining interest among the scientific community for its potential as blood-based markers for cancer detection. Using computational pipeline, this study screened exosome-based miRNA that is functionally regulating OM in PRAD. We retrieved the expression profile of miRNA, mRNA from PRAD microarray, and RNA-Seq samples deposited in global repositories and identified the differentially expressed miRNAs (DEMs) and differentially expressed genes. Thereafter, the average expression of the miRNAs was identified in extracellular vesicle specifically in exosomes. Survival analysis and clinical profiling identified functionally significant miR-92a-3p to be a key factor in OM. This was further examined by the interactions with various noncoding RNA elements, transcription factors, oncogenes, tumor suppressor genes, and protein kinases regulated by miR-92a-3p. Identifying the expression pattern, nodal metastasis, Gleason score, and hazard ratio deciphered the critical role of the targets regulated by miR-92a-3p. Further, binding association analyzed through energy, seed match and accessibility showed the miRNA-targets involved in cytokine, TGF-β, and Wnt signaling having close regulatory role in promoting OM. Our findings highlight the potent role of miR-92a-3p as blood-based diagnostic biomarker for OM. The comprehensive insights from our study can be elemental in designing diagnostic biomarker for PRAD.

Keywords: circulatory biomarker; diagnostics; exosome; gene regulatory network; micro RNA; noncoding RNAs; prostate cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma* / diagnosis
  • Adenocarcinoma* / genetics
  • Biomarkers
  • Exosomes* / genetics
  • Exosomes* / metabolism
  • Humans
  • Male
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Prostate / metabolism

Substances

  • MicroRNAs
  • Biomarkers