Virtual screening of FOXO3a activators from natural product-like compound library

Mol Divers. 2023 Jun 1. doi: 10.1007/s11030-023-10664-0. Online ahead of print.

Abstract

FOXO3a is an inevitable transcription factor, which is involved in the regulation of biological processes such as proliferation, DNA damage repair, cell cycle arrest and cell death. Previous studies confirmed that FOXO3a is an excellent tumor suppressor and in cancer cells, it gets phosphorylated followed by proteasomal degradation. FOXO3a is found to be inactivated in cancer cells, whereas in normal cells it gets activated and upregulates its downstream targets, which induces apoptotic pathways. Hence, activation of FOXO3a can be implicated in cancer prevention and treatment. A variety of commercially available FOXO3a activators such as doxorubicin and metformin possess undesirable adverse effects to normal cells and tissues, which are their major limitations. Natural bioactive compounds, eliminating the limitations of such compounds, become an excellent choice for the treatment and prevention of cancer. In this study, a library of natural product-like compounds was screened for their FOXO3a activation potential through in silico approach, which included the use of several bioinformatics tools and processes. Other molecular interaction studies as well as binding and specificity studies were carried out with the help of molecular dynamics simulation. Virtual screening of 7700 small molecules from the Natural Products-like Compound Library revealed the top three FOXO3a activators F3385-6269, F2183-0033 and F3351-0330. Further validation studies are warranted to confirm these findings.

Keywords: Cancer; FOXO3a; Molecular docking; Molecular dynamics simulation; Natural bioactive compounds.