Evolving landscape of carbapenem-resistant Pseudomonas aeruginosa at a single centre in the USA

JAC Antimicrob Resist. 2023 Jun 3;5(3):dlad070. doi: 10.1093/jacamr/dlad070. eCollection 2023 Jun.

Abstract

Objectives: The increased identification of carbapenem-resistant Pseudomonas aeruginosa (CR-PA) is an ongoing concern. However, information on the evolving antimicrobial resistance profile and molecular epidemiology of CR-PA over time is scarce. Thus, we conducted a cross-sectional analysis to investigate the phenotypic and genotypic characteristics of CR-PA recovered over different time periods, focusing on the isolates exhibiting a ceftolozane/tazobactam resistance phenotype.

Methods: A total of 169 CR-PA isolated from clinical specimens at a single centre in Houston, TX, USA were studied. Among them, 61 isolates collected between 1999 and 2005 were defined as historical strains, and 108 collected between 2017 and 2018 were defined as contemporary strains. Antimicrobial susceptibilities against selected β-lactams was determined. WGS data were used for the identification of antimicrobial resistance determinants and phylogenetic analysis.

Results: Non-susceptibility to ceftolozane/tazobactam and ceftazidime/avibactam increased from 2% (1/59) to 17% (18/108) and from 7% (4/59) to 17% (18/108) from the historical to the contemporary collection, respectively. Carbapenemase genes, which were not identified in the historical collection, were harboured by 4.6% (5/108) of the contemporary strains, and the prevalence of ESBL genes also increased from 3.3% (2/61) to 16% (17/108). Genes encoding acquired β-lactamases were largely confined to the high-risk clones. Among ceftolozane/tazobactam-resistant isolates, non-susceptibility to ceftazidime/avibactam, imipenem/relebactam and cefiderocol was observed in 94% (15/16), 56% (9/16) and 12.5% (2/16), respectively. Resistance to ceftolozane/tazobactam and imipenem/relebactam was primarily associated with the presence of exogenous β-lactamases.

Conclusions: Acquisition of exogenous carbapenemases and ESBLs may be a worrisome trend in P. aeruginosa.