A Research Investigation into the Impact of Reinforcement Distribution and Blast Distance on the Blast Resilience of Reinforced Concrete Slabs

Materials (Basel). 2023 May 30;16(11):4068. doi: 10.3390/ma16114068.

Abstract

Reinforcement is one of the important factors affecting the anti-blast performance of reinforced concrete (RC) slabs. In order to study the impact of different reinforcement distribution and different blast distances on the anti-blast performance of RC slabs, 16 model tests were carried out for RC slab members with the same reinforcement ratio but different reinforcement distribution and the same proportional blast distance but different blast distances. By comparing the failure patterns of RC slabs and the sensor test data, the impact of reinforcement distribution and blast distance on the dynamic response of RC slabs was analyzed. The results show that, under contact explosion and non-contact explosion, the damage degree of single-layer reinforced slabs is more serious than that of double-layer reinforced slabs. When the scale distance is the same, with the increase of distance, the damage degree of single-layer reinforced slabs and double-layer reinforced slabs increases first and then decreases, and the peak displacement, rebound displacement and residual deformation near the center of the bottom of RC slabs gradually increase. When the blast distance is small, the peak displacement of single-layer reinforced slabs is smaller than that of double-layer reinforced slabs. When the blast distance is large, the peak displacement of double-layer reinforced slabs is smaller than that of single-layer reinforced slabs. No matter how large the blast distance, the rebound peak displacement of the double-layer reinforced slabs is smaller, and the residual displacement is larger. The research in this paper provides a reference for the anti-explosion design, construction and protection of RC slabs.

Keywords: anti-blast performance; blast distance; blast resistance; model tests; reinforced concrete slabs; reinforcement distribution.

Grants and funding

This research was funded by National Key Research and Development Program of China (grant number 2021YFC3100802).