Impact of flow regime on the performance of anti-biofouling coatings

Sci Rep. 2023 Jun 12;13(1):9501. doi: 10.1038/s41598-023-36736-7.


Biofouling poses significant challenges for marine transportation due to increased skin drag, which results in increased fuel cost and associated [Formula: see text] emissions. Current antifouling methods involving polymer coating, biocides, and self-depleting layers harm marine ecosystems and contribute to marine pollution. Significant advancements have resulted in using bioinspired coatings to address this issue. However, prior investigations have predominantly focused on wettability and adhesion aspects, resulting in a limited understanding of the impact of flow regime on bioinspired structure patterns for antifouling. We conducted comprehensive experiments with two bioinspired coatings1 under laminar and turbulent flow regimes and compared them with a smooth surface. The two coatings are composed of regular arrangements of micropillars measuring 85 μm in height and spaced at 180 μm (pattern A) and 50 μm high micropillars spaced at 220 μm (pattern B). Theoretical arguments indicate that wall-normal velocity fluctuations near the micropillars' top significantly contribute to reducing the onset of biofouling under turbulence compared to the smooth surface. Pattern A coating can effectively decrease biofouling by 90% for fouling sizes exceeding 80 microns when compared to a smooth surface subjected to a turbulent flow regime. The coatings exhibited comparable anti-biofouling properties under a laminar flow. Also, the smooth surface experienced substantially higher biofouling under laminar flow compared to turbulent conditions. This underscores how the effectiveness of anti-biofouling approaches is critically influenced by the flow regime.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biofouling* / prevention & control
  • Ecosystem
  • Environmental Pollution
  • Polymers
  • Transportation


  • Polymers