Integrated clinical genomic analysis reveals xenobiotic metabolic genes are downregulated in meningiomas of current smokers

J Neurooncol. 2023 Jun;163(2):397-405. doi: 10.1007/s11060-023-04359-7. Epub 2023 Jun 15.


Introduction: Meningiomas are the most common primary intracranial tumor. Recently, various genetic classification systems for meningioma have been described. We sought to identify clinical drivers of different molecular changes in meningioma. As such, clinical and genomic consequences of smoking in patients with meningiomas remain unexplored.

Methods: 88 tumor samples were analyzed in this study. Whole exome sequencing (WES) was used to assess somatic mutation burden. RNA sequencing data was used to identify differentially expressed genes (DEG) and genes sets (GSEA).

Results: Fifty-seven patients had no history of smoking, twenty-two were past smokers, and nine were current smokers. The clinical data showed no major differences in natural history across smoking status. WES revealed absence of AKT1 mutation rate in current or past smokers compared to non-smokers (p = 0.046). Current smokers had increased mutation rate in NOTCH2 compared to past and never smokers (p < 0.05). Mutational signature from current and past smokers showed disrupted DNA mismatch repair (cosine-similarity = 0.759 and 0.783). DEG analysis revealed the xenobiotic metabolic genes UGT2A1 and UGT2A2 were both significantly downregulated in current smokers compared to past (Log2FC = - 3.97, padj = 0.0347 and Log2FC = - 4.18, padj = 0.0304) and never smokers (Log2FC = - 3.86, padj = 0.0235 and Log2FC = - 4.20, padj = 0.0149). GSEA analysis of current smokers showed downregulation of xenobiotic metabolism and enrichment for G2M checkpoint, E2F targets, and mitotic spindle compared to past and never smokers (FDR < 25% each).

Conclusion: In this study, we conducted a comparative analysis of meningioma patients based on their smoking history, examining both their clinical trajectories and molecular changes. Meningiomas from current smokers were more likely to harbor NOTCH2 mutations, and AKT1 mutations were absent in current or past smokers. Moreover, both current and past smokers exhibited a mutational signature associated with DNA mismatch repair. Meningiomas from current smokers demonstrate downregulation of xenobiotic metabolic enzymes UGT2A1 and UGT2A2, which are downregulated in other smoking related cancers. Furthermore, current smokers exhibited downregulation xenobiotic metabolic gene sets, as well as enrichment in gene sets related to mitotic spindle, E2F targets, and G2M checkpoint, which are hallmark pathways involved in cell division and DNA replication control. In aggregate, our results demonstrate novel alterations in meningioma molecular biology in response to systemic carcinogens.

Keywords: Meningioma; Smoking; UGT2A1; UGT2A2; Xenobiotic metabolism.

MeSH terms

  • Genomics
  • Glucuronosyltransferase / genetics
  • Humans
  • Meningeal Neoplasms* / pathology
  • Meningioma* / genetics
  • Meningioma* / pathology
  • Mutation
  • Smoking / adverse effects
  • Smoking / genetics
  • Xenobiotics


  • Xenobiotics
  • UGT2A1 protein, human
  • Glucuronosyltransferase