Colossal Ionic Conductivity in Interphase Strain-Engineered Nanocomposite Films

J Am Chem Soc. 2023 Jun 28;145(25):13623-13631. doi: 10.1021/jacs.3c01298. Epub 2023 Jun 16.


Owing to their wide application in oxide-based electrochemical and energy devices, ion conductors have attracted considerable attention. However, the ionic conductivity of the developed systems is still too low to satisfy the low-temperature application. In this study, by developing the emergent interphase strain engineering method, we achieve a colossal ionic conductivity in SrZrO3-xMgO nanocomposite films, which is over one order of magnitude higher than that of the currently widely used yttria-stabilized zirconia below 673 K. Atomic-scale electron microscopy studies ascribe this superior ionic conductivity to the periodically well-aligned SrZrO3 and MgO nanopillars that feature coherent interfaces. Wherein, a tensile strain as large as +1.7% is introduced into SrZrO3, expanding the c-lattice and distorting the oxygen octahedra to decrease the oxygen migration energy. Combining with theoretical assessments, we clarify the strain-dependent oxygen migration path and energy and unravel the mechanisms for strain-tuned ionic conductivity. This study provides a new scope for the property improvement of wide-range ion conductors by strain engineering.