Delivery of Porphyrins Through Self-Assembling Peptide Hydrogels for Accelerated Healing of Experimental Skin Defects In Vivo

Cureus. 2023 May 17;15(5):e39120. doi: 10.7759/cureus.39120. eCollection 2023 May.


Introduction: The care and healing of skin defects resulting from different causes has been the object of research to achieve rapid and complete skin regeneration. Hydrogels have been used for their ability to maintain hydration during wound healing, absorb wound exudate, and cover the underlying tissue without adherence while being transparent. In this study, we evaluated the efficacy of a hydrogel (H) with encapsulated porphyrin (H+P) on a rat model of surgically-induced skin defects.

Methods: Four round 6 mm diameter skin defects were performed under general anesthesia on the dorsal area of 24 three-month-old "Young" and 24 twelve-month-old "Mature" male rats. Each age group was separated into the Control, H, and H+P groups, n=8 each, where no therapy, H, or H+P was respectively applied daily for 20 days. Digital photographs and skin biopsies were taken on the third, seventh, 10th, and 20th postoperative days and evaluated by planimetry, histology, and immunohistochemistry.

Results: Planimetry results demonstrated significantly decreased perimeter, diameter, and area measurements (p<0.005) of group H+P compared to Control and H groups on days 10 and 20 in the young rats, while in the mature rats, the significant differences were evident earlier (perimeter third day p<0.05; diameter and area seventh day p<0.05 and p<0.005, respectively vs. H). Granulation and scar tissue formation were also reduced in the H+P groups although they were not statistically significant.

Conclusions: The application of H+P on the skin defects benefited the healing process in both young and mature animal groups, as evidenced by the statistically significant findings of planimetry. The beneficial healing process was more pronounced in the mature animals, both in the level of statistical significance as well as regarding time (evident already on the third day of healing), probably due to porphyrin assisting the reduced healing rate, which is observed in organisms of advanced age.

Keywords: histology; hydrogel; planimetry; porphyrin; self-assembling peptide; skin defect; wound healing.

Grants and funding

This research has been co‐financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T1EDK -01504). CPA acknowledges support from the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 390)