The biomechanics of chewing and suckling in the infant: A potential mechanism for physiologic metopic suture closure

PLoS Comput Biol. 2023 Jun 22;19(6):e1011227. doi: 10.1371/journal.pcbi.1011227. eCollection 2023 Jun.

Abstract

Craniosynostosis is a condition with neurologic and aesthetic sequelae requiring invasive surgery. Understanding its pathobiology requires familiarity with the processes underlying physiologic suture closure. Animal studies have shown that cyclical strain from chewing and suckling influences the closure of cranial vault sutures, especially the metopic, an important locus of craniosynostosis. However, there are no human data correlating strain patterns during chewing and suckling with the physiologically early closure pattern of the metopic suture. Furthermore, differences in craniofacial morphology make it challenging to directly extrapolate animal findings to humans. Eight finite-element analysis (FEA) models were built from craniofacial computer tomography (CT) scans at varying stages of metopic suture closure, including two with isolated non-syndromic metopic craniosynostosis. Muscle forces acting on the cranium during chewing and suckling were simulated using subject-specific jaw muscle cross-sectional areas. Chewing and suckling induced tension at the metopic and sagittal sutures, and compressed the coronal, lambdoid, and squamous sutures. Relative to other cranial vault sutures, the metopic suture experienced larger magnitudes of axial strain across the suture and a lower magnitude of shear strain. Strain across the metopic suture decreased during suture closure, but other sutures were unaffected. Strain patterns along the metopic suture mirrored the anterior to posterior sequence of closure: strain magnitudes were highest at the glabella and decreased posteriorly, with minima at the nasion and the anterior fontanelle. In models of physiologic suture closure, increased degree of metopic suture closure correlated with higher maximum principal strains across the frontal bone and mid-face, a strain regime not observed in models of severe metopic craniosynostosis. In summary, our work provides human evidence that bone strain patterns from chewing and suckling correlate with the physiologically early closure pattern of the metopic suture, and that deviations from physiologic strain regimes may contribute to clinically observed craniofacial dysmorphism.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Cranial Sutures / physiology
  • Craniosynostoses* / surgery
  • Humans
  • Infant
  • Mastication*
  • Sutures

Grants and funding

The authors received no specific funding for this work.