Patulin poses a potential risk to human health, and current methods for removing it have certain limits. Thus, the effective and secure technique for degrading patulin in juice is critical. In this study, a nitrogen-doped chitosan-TiO2 nanocomposite (N-TiO2 Nps) as a photocatalyst was employed to decompose patulin. Under the action of the photocatalyst, 500 μg/L patulin was completely degraded within 1 h in simulated juice. Quenching experiments identified superoxide and hydroxyl radicals as the dominant species responsible for patulin degradation. On the bases of liquid chromatography-mass spectrometry (LC-MS) and density functional theory (DFT) calculation, the reaction sites in patulin were predicted and a possible photodegradation pathway was proposed. The findings not only elucidated a new method for removing patulin but also provided a theoretical basis for scrutinizing the degradation mechanism of mycotoxins.
Keywords: DFT calculation; Degradation mechanism; Intermediates; Patulin; Photocatalysis.
Copyright © 2023 Elsevier Ltd. All rights reserved.