Abnormal Resting-State Network Presence in Females with Overactive Bladder

Biomedicines. 2023 Jun 5;11(6):1640. doi: 10.3390/biomedicines11061640.

Abstract

Overactive bladder (OAB) is a global problem reducing the quality of life of patients and increasing the costs of any healthcare system. The etiology of OAB is understudied but likely involves supraspinal network alterations. Here, we characterized supraspinal resting-state functional connectivity in 12 OAB patients and 12 healthy controls (HC) who were younger than 60 years. Independent component analysis showed that OAB patients had a weaker presence of the salience (Cohen's d = 0.9) and default mode network (Cohen's d = 1.1) and weaker directed connectivity between the fronto-parietal network and salience network with a longer lag time compared to HC. A region of interest analysis demonstrated weaker connectivity in OAB compared to HC (Cohen's d > 1.6 or < -1.6), particularly within the frontal and prefrontal cortices. In addition, weaker seed (insula, ventrolateral prefrontal cortex) to voxel (anterior cingulate cortex, frontal gyrus, superior parietal lobe, cerebellum) connectivity was found in OAB compared to HC (Cohen's d > 1.9). The degree of deviation in supraspinal connectivity in OAB patients (relative to HC) appears to be an indicator of the severity of the lower urinary tract symptoms and an indication that such symptoms are directly related to functional supraspinal alterations. Thus, future OAB therapy options should also consider supraspinal targets, while neuroimaging techniques should be given more consideration in the quest for better phenotyping of OAB.

Keywords: early diagnosis research; functional connectivity; neuro-urology; overactive bladder; resting-state magnetic resonance imaging; supraspinal control; urgency urinary incontinence; urinary urgency.