Effect of Acetylation of Two Cellulose Nanocrystal Polymorphs on Processibility and Physical Properties of Polylactide/Cellulose Nanocrystal Composite Film

Molecules. 2023 Jun 9;28(12):4667. doi: 10.3390/molecules28124667.

Abstract

Polylactide (PLA) has become a popular alternative for petroleum-based plastics to reduce environmental pollution. The broader application of PLA is hampered by its brittle nature and incompatibility with the reinforcement phase. The aim of our work was to improve the ductility and compatibility of PLA composite film and investigate the mechanism by which nanocellulose enhances PLA polymer. Here, we present a robust PLA/nanocellulose hybrid film. Two different allomorphic cellulose nanocrystals (CNC-I and CNC-III) and their acetylated products (ACNC-I and ACNC-III) were used to realize better compatibility and mechanical performance in a hydrophobic PLA matrix. The tensile stress of the composite films with 3% ACNC-I and ACNC-III increased by 41.55% and 27.22% compared to pure PLA film, respectively. Compared to the CNC-I or CNC-III enhanced PLA composite films, the tensile stress of the films increased by 45.05% with 1% ACNC-I and 56.15% with 1% ACNC-III. In addition, PLA composite films with ACNCs showed better ductility and compatibility because the composite fracture gradually transitioned to a ductile fracture during the stretching process. As a result, ACNC-I and ACNC-III were found to be excellent reinforcing agents for the enhancement of the properties of polylactide composite film, and the replacement some petrochemical plastics with PLA composites would be very promising in actual life.

Keywords: acetylation; cellulose nanocrystals; compatibility; polylactide; tensile stress.