The ACE2 receptor accelerates but is not biochemically required for SARS-CoV-2 membrane fusion
- PMID: 37389252
- PMCID: PMC10306070
- DOI: 10.1039/d2sc06967a
The ACE2 receptor accelerates but is not biochemically required for SARS-CoV-2 membrane fusion
Abstract
The SARS-CoV-2 coronavirus infects human cells via the ACE2 receptor. Structural evidence suggests that ACE2 may not just serve as an attachment factor but also conformationally activate the SARS-CoV-2 spike protein for membrane fusion. Here, we test that hypothesis directly, using DNA-lipid tethering as a synthetic attachment factor in place of ACE2. We find that SARS-CoV-2 pseudovirus and virus-like particles are capable of membrane fusion without ACE2 if activated with an appropriate protease. Thus, ACE2 is not biochemically required for SARS-CoV-2 membrane fusion. However, addition of soluble ACE2 speeds up the fusion reaction. On a per-spike level, ACE2 appears to promote activation for fusion and then subsequent inactivation if an appropriate protease is not present. Kinetic analysis suggests at least two rate-limiting steps for SARS-CoV-2 membrane fusion, one of which is ACE2 dependent and one of which is not. Since ACE2 serves as a high-affinity attachment factor on human cells, the possibility to replace it with other factors implies a flatter fitness landscape for host adaptation by SARS-CoV-2 and future related coronaviruses.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19.Immunobiology. 2021 Jan;226(1):152021. doi: 10.1016/j.imbio.2020.152021. Epub 2020 Nov 5. Immunobiology. 2021. PMID: 33232865 Free PMC article.
-
Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity.J Virol. 2022 Apr 27;96(8):e0012822. doi: 10.1128/jvi.00128-22. Epub 2022 Mar 28. J Virol. 2022. PMID: 35343766 Free PMC article.
-
SARS-CoV-2 entry and fusion are independent of ACE2 localization to lipid rafts.J Virol. 2024 Nov 21:e0182324. doi: 10.1128/jvi.01823-24. Online ahead of print. J Virol. 2024. PMID: 39570043
-
The expression of hACE2 receptor protein and its involvement in SARS-CoV-2 entry, pathogenesis, and its application as potential therapeutic target.Tumour Biol. 2021;43(1):177-196. doi: 10.3233/TUB-200084. Tumour Biol. 2021. PMID: 34420993 Review.
-
ACE2-Independent Alternative Receptors for SARS-CoV-2.Viruses. 2022 Nov 16;14(11):2535. doi: 10.3390/v14112535. Viruses. 2022. PMID: 36423144 Free PMC article. Review.
Cited by
-
The panzootic potential of SARS-CoV-2.Bioscience. 2023 Dec 18;73(11):814-829. doi: 10.1093/biosci/biad102. eCollection 2023 Nov. Bioscience. 2023. PMID: 38125826 Free PMC article.
-
Ebola Virus Glycoprotein Strongly Binds to Membranes in the Absence of Receptor Engagement.ACS Infect Dis. 2024 May 10;10(5):1590-1601. doi: 10.1021/acsinfecdis.3c00622. Epub 2024 Apr 29. ACS Infect Dis. 2024. PMID: 38684073 Free PMC article.
-
Role of N343 glycosylation on the SARS-CoV-2 S RBD structure and co-receptor binding across variants of concern.Elife. 2024 Jun 12;13:RP95708. doi: 10.7554/eLife.95708. Elife. 2024. PMID: 38864493 Free PMC article.
-
Kinetic Landscape of Single Virus-like Particles Highlights the Efficacy of SARS-CoV-2 Internalization.Viruses. 2024 Aug 22;16(8):1341. doi: 10.3390/v16081341. Viruses. 2024. PMID: 39205315 Free PMC article.
-
Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry.J Virol. 2023 May 31;97(5):e0199222. doi: 10.1128/jvi.01992-22. Epub 2023 May 3. J Virol. 2023. PMID: 37133381 Free PMC article.
References
-
- W. H. Organization, WHO Coronavirus dashboard, https://covid19.who.int/, accessed October 2022
-
- Zhou P. Yang X. L. Wang X. G. Hu B. Zhang L. Zhang W. Si H. R. Zhu Y. Li B. Huang C. L. Chen H. D. Chen J. Luo Y. Guo H. Jiang R. D. Liu M. Q. Chen Y. Shen X. R. Wang X. Zheng X. S. Zhao K. Chen Q. J. Deng F. Liu L. L. Yan B. Zhan F. X. Wang Y. Y. Xiao G. F. Shi Z. L. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous
