Real-time ultrasound phase imaging

Ultrasonics. 2023 Sep:134:107086. doi: 10.1016/j.ultras.2023.107086. Epub 2023 Jun 22.

Abstract

The Correlation-Based (CB) imaging method is characterized by its high spatial resolution capabilities, but it is known to require heavy computational resources due to its high complexity. This paper shows that the CB imaging method can be used to estimate the phase of the complex reflection coefficients contained in the observation window. The resulting Correlation-Based Phase Imaging (CBPI) method can be used to segment and identify different features or tissue elasticity variations in a given medium. A Numerical validation is first proposed by considering a set of fifteen point-like scatterers on a Verasonics Simulator. Then, three experimental datasets are used to show the potential of CBPI on scatterers and specular reflectors. In vitro imaging results are first presented to show that CBPI allows retrieving phase information on hyperechoic reflectors, but also on weak reflectors such as elasticity targets. It is demonstrated that CBPI helps distinguishing regions of different elasticity, but of same low-contrast echogenicity, which is otherwise impossible with standard B-mode or Synthetic Aperture Focusing Techniques (SAFT). Then, CBPI of a needle in an ex vivo chicken breast is performed to show that the method works on specular reflectors. It is shown that the phase of the different interfaces associated to the first wall of the needle are well reconstructed using CBPI. The heterogeneous architecture used to enable real-time CBPI is presented. A Nvidia GeForce RTX 2080 Ti Graphics Processing Unit (GPU) is used to process the real-time acquired signals from a Verasonics Vantage 128 research echograph. Frame rates of 18 frames per second are achieved for the whole acquisition and signal processing chain on standard a 500 × 200 pixels grid.

Keywords: Correlation-Based Imaging; Phase coherence; Phase imaging; Ultrasound imaging.