Evaluation of an Automated System for the Counting of Microbial Colonies

Microbiol Spectr. 2023 Aug 17;11(4):e0067323. doi: 10.1128/spectrum.00673-23. Epub 2023 Jul 3.

Abstract

Counting of microbial colonies is a common technique employed in research and diagnostics. To simplify this tedious and time-consuming process, automated systems have been proposed. This study aimed to elucidate the reliability of automated colony counting. We evaluated a commercially available instrument (UVP ColonyDoc-It Imaging Station) in regard to its accuracy and potential time savings. Suspensions of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus faecium, and Candida albicans (n = 20 each) were adjusted to achieve growth of approximately 1,000, 100, 10, and 1 colony per plate, respectively, after overnight incubation on different solid media. Compared with manual counting, each plate was automatically counted by the UVP ColonyDoc-It with and without visual adjustment on a computer display. For all bacterial species and concentrations automatically counted without visual correction, an overall mean difference from manual counts of 59.7%, a proportion of isolates with overestimation/underestimation of colony numbers of 29%/45%, respectively, and only a moderate relationship (R2 = 0.77) with the manual counting were shown. Applying visual correction, the overall mean difference from manual counts was 1.8%, the proportion of isolates with overestimation/underestimation of colony numbers amounted to 2%/42%, respectively, and a strong relationship (R2 = 0.99) with the manual counting was observed. The mean time needed for manual counting compared with automated counting without and with visual correction was 70 s, 30 s, and 104 s, respectively, for bacterial colonies through all concentrations tested. Generally, similar performance regarding accuracy and counting time was observed with C. albicans. In conclusion, fully automatic counting showed low accuracy, especially for plates with very high or very low colony numbers. After visual correction of the automatically generated results, the concordance with manual counts was high; however, there was no advantage in reading time. IMPORTANCE Colony counting is a widely utilized technique in the field of microbiology. The accuracy and convenience of automated colony counters are essential for research and diagnostics. However, there is only sparse evidence on performance and usefulness of such instruments. This study examined the current state of reliability and practicality of the automated colony counting with an advanced modern system. For this, we thoroughly evaluated a commercially available instrument in terms of its accuracy and counting time required. Our findings indicate that fully automatic counting resulted in low accuracy, particularly for plates with very high or very low colony numbers. Visual correction of the automated results on a computer screen improved concordance with manual counts, but there was no benefit in counting time.

Keywords: agar; automatic counts; bacteria; colony counting; yeast.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria*
  • Candida albicans
  • Colony Count, Microbial
  • Escherichia coli*
  • Reproducibility of Results