Genome-wide detection of CNV regions between Anqing six-end-white and Duroc pigs

Mol Cytogenet. 2023 Jul 3;16(1):12. doi: 10.1186/s13039-023-00646-0.

Abstract

Background: Anqing six-end-white pig is a native breed in Anhui Province. The pigs have the disadvantages of a slow growth rate, low proportion of lean meat, and thick back fat, but feature the advantages of strong stress resistance and excellent meat quality. Duroc pig is an introduced pig breed with a fast growth rate and high proportion of lean meat. With the latter breed featuring superior growth characteristics but inferior meat quality traits, the underlying molecular mechanism that causes these phenotypic differences between Chinese and foreign pigs is still unclear.

Results: In this study, copy number variation (CNV) detection was performed using the re-sequencing data of Anqing Six-end-white pigs and Duroc pigs, A total of 65,701 CNVs were obtained. After merging the CNVs with overlapping genomic positions, 881 CNV regions (CNVRs) were obtained. Based on the obtained CNVR information combined with their positions on the 18 chromosomes, a whole-genome map of the pig CNVs was drawn. GO analysis of the genes in the CNVRs showed that they were primarily involved in the cellular processes of proliferation, differentiation, and adhesion, and primarily involved in the biological processes of fat metabolism, reproductive traits, and immune processes.

Conclusion: The difference analysis of the CNVs between the Chinese and foreign pig breeds showed that the CNV of the Anqing six-end-white pig genome was higher than that of the introduced pig breed Duroc. Six genes related to fat metabolism, reproductive performance, and stress resistance were found in genome-wide CNVRs (DPF3, LEPR, MAP2K6, PPARA, TRAF6, NLRP4).

Keywords: Anqing six-end-white pigs; Copy number variation; Duroc pigs; Genome-wide.