Pelletizing biochar enables its use as a biofilter medium for polluted canal water treatment. Coconut husk biochar pellets and their modification with chitosan (CHC) were compared with conventional activated carbon pellets and gravel. The biofilter columns with these media were operated with a hydraulic loading rate of 0.1 m3/m2∙h. CHC showed the highest potential to reduce phosphate and nitrogen, via the adsorption process in the first week of filtration and later enhanced by biodegradation, to achieve removal efficiencies of 61.70 and 54.37% for these two key nutrients, respectively, over five weeks of biofilter operation. The predominant bacteria in the biofilter communities were characterized at the end of the experiments by next generation sequencing and quantitative polymerase chain reaction analysis. The biofilter communities included ammonium oxidizing, nitrite oxidizing, denitrifying, polyphosphate accumulating and denitrifying phosphate-accumulating bacteria that benefit nutrient removal. The CHC biofilter also effectively removed micropollutants, including pharmaceuticals.
Keywords: 16S rRNA gene sequencing; Biochar; Chitosan; LC-MS analysis; Nutrient pollution; Water treatment.
Copyright © 2023 Elsevier Ltd. All rights reserved.