Prior experiences, conditioning cues, and expectations of improvement are essential for placebo analgesia expression. The dorsolateral prefrontal cortex is considered a key region for converting these factors into placebo responses. Since dorsolateral prefrontal cortex neuromodulation can attenuate or amplify placebo, we sought to investigate dorsolateral prefrontal cortex biochemistry and function in 38 healthy individuals during placebo analgesia. After conditioning participants to expect pain relief from a placebo "lidocaine" cream, we collected baseline magnetic resonance spectroscopy (1H-MRS) at 7 Tesla over the right dorsolateral prefrontal cortex. Following this, functional magnetic resonance imaging scans were collected during which identical noxious heat stimuli were delivered to the control and placebo-treated forearm sites. There was no significant difference in the concentration of gamma-aminobutyric acid, glutamate, Myo-inositol, or N-acetylaspartate at the level of the right dorsolateral prefrontal cortex between placebo responders and nonresponders. However, we identified a significant inverse relationship between the excitatory neurotransmitter glutamate and pain rating variability during conditioning. Moreover, we found placebo-related activation within the right dorsolateral prefrontal cortex and altered functional magnetic resonance imaging coupling between the dorsolateral prefrontal cortex and the midbrain periaqueductal gray, which also correlated with dorsolateral prefrontal cortex glutamate. These data suggest that the dorsolateral prefrontal cortex formulates stimulus-response relationships during conditioning, which are then translated to altered cortico-brainstem functional relationships and placebo analgesia expression.
Keywords: acute pain; conditioning; dorsolateral prefrontal cortex; placebo analgesia; variability.
© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.