Exopolysaccharide-Producing Lacticaseibacillus rhamnosus Space Mutant Improves the Techno-Functional Characteristics of Fermented Cow and Goat Milks

J Agric Food Chem. 2023 Jul 19;71(28):10729-10741. doi: 10.1021/acs.jafc.3c02381. Epub 2023 Jul 8.

Abstract

Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9) is increasingly used as a co-fermentation culture in fermented milk production. Recently, a capsular polysaccharide (CPS)- and exopolysaccharide (EPS)-producing mutant of Probio-M9, HG-R7970-3, was generated by space mutagenesis. This study compared the performance of cow and goat milk fermentation between the non-CPS/-EPS-producing parental strain (Probio-M9) and the CPS/EPS producer (HG-R7970-3), and the stability of products fermented by the two bacteria. Our results showed that using HG-R7970-3 as the fermentative culture could improve the probiotic viable counts, physico-chemical, texture, and rheological properties in both cow and goat milk fermentation. Substantial differences were also observed in the metabolomics profiles between fermented cow and goat milks produced by the two bacteria. Comparing with Probio-M9-fermented cow and goat milks, those fermented by HG-R7970-3 were enriched in a number of flavor compounds and potential functional components, particularly acids, esters, peptides, and intermediate metabolites. Moreover, HG-R7970-3 could improve the post-fermentation flavor retention capacity. These new and added features are of potential to improve the techno-functional qualities of conventional fermented milks produced by Probio-M9, and these differences are likely imparted by the acquired CPS-/EPS-producing ability of the mutant. It merits further investigation into the sensory quality and in vivo function of HG-R7970-3-fermented milks.

Keywords: exopolysaccharide; fermented cow milk; fermented goat milk; probiotics; space mutagenesis.

MeSH terms

  • Animals
  • Bacteria
  • Cattle
  • Cultured Milk Products* / microbiology
  • Female
  • Fermentation
  • Goats
  • Lacticaseibacillus
  • Lacticaseibacillus rhamnosus* / genetics
  • Milk / chemistry
  • Probiotics* / chemistry